An Instrument Data Simulator for MICADO

Status
October 2017

Kieran Leschinski
Stable Version 0.4

Main Developments

- Imaging mode
 - 4mas, 1.5mas, sub-pixel are working
 - Improved thermal background
 - Verification with HAWK-I data proposal accepted (P100)

- Spectroscopy mode
 - Stand-alone prototype is working
 - Needs to be integrated into main package
SimCADO has more built in Source objects

- **Point Sources**
 - `cluster()`
 - `stars()`, `star()`

- **Extended Sources**
 - `elliptical()`, `sersic_profile()`
 - `spiral()`, `spiral_profile()`

- **Image support**
 - `source_from_image()`

- **Basic SIE gravitational lens**
 - `apply_grav_lens()`
Welcome to SimCADocs

The (slowly expanding) documentation base for SimCADO

Omega Cen as imaged with HST/WFC3, HST/SimCADO and MICADO/SimCADO by Maximilian Fabricius (MPE). The synthetic images of the same region of Omega Cen are based on the HST catalog by Anderson & van der Marel 2010 and augmented by all the faint stars that did not end up in the HST catalogue.

SimCADO in a nutshell

SimCADO is a python package designed to simulate the effects of the Atmosphere, E-ELT, and MICADO instrument on incoming light. The current version (v0.2) can simulate the MICADO imaging modi (4mas and 1.5mas per pixel in the wavelength range 0.7µm to 2.5µm).

iPython/Jupyter notebooks
Help desk at

oliver.czoske@univie.ac.at
kieran.leschinski@univie.ac.at

Help desk availability notice
Unfortunately for the near future** we can provide help
only on a volunteer best-effort basis

** Near future = Oliver : end of year(?), Kieran : ~March 2018
MICADO will reach K~27.5 and J~29 in 5 hours

Or $K_{AB} \sim 29.3$ and $J_{AB} \sim 29.8$ if you like AB magnitudes
Young massive clusters are useful

Advantages
- Young < 100 Myr
- Population intact
- No explosions
- Membership is easy

Disadvantages
- Too dense for current telescopes

Diagram Notes:
- Arches (8.5 kpc)
- R136 (LMC)
- Star density [stars/arcsec^2]
- Cluster age [Myr]
- Limiting magnitude is K=28
- Star densities of clusters respect the magnitude limit
- Resolvability limits assume 1 star per telescope FWHM for λ=1.2 μm
- Data taken from Portegies Zwart (2010)
Extracted IMF with PSF Photometry
Don’t rely on exposure time calculators for dense regions.
SimCADO 1
Point sources and Supernovae

LSST will provide bi-weekly coverage of the sky down to i~24 mag

5 mins/day with MICADO in J-band sufficient to follow SNe for >100 days

See Wiis et al. (in prep)
Make a `Source` object and run it

```python
In [ ]:
import simcado as sim
from astropy.io import ascii

lc = ascii.read("./SN2015bn sdss_g.txt")

for i in np.arange(len(lc)):
    src_sn = sim.source.star(filter_name="J", mag=lc["mag"][i])
    sim.run(src_sn, filename=str(i)+".fits", OBS_EXPTIME=300)

make_gif(tbl=lc)
```
Make a `Source` object and run it

```python
import simcado as sim
from astropy.io import ascii

lc = ascii.read("./SN2015bn sds_g.txt")

for i in np.arange(len(lc)):
    src_sn = sim.source.star(filter_name="J", mag=lc["mag"][i])
    sim.run(src_sn, filename=str(i)+".fits", OBS_EXPTIME=300)

make_gif(tbl, lc)
```

Make a star object

Magic "batteries included" one-liner simulation
SimCADO 2: Extended objects and sub-structure

Model of B1938 “observed” with SimCADO

2hr runs for system H=19^m

Effects from halo sub-structures with M>1E7 M⊙ are detectable

See Vegetti & Czoske (in prep)
SimCADO 2:
The same system for H=21 mag

Model of B1938 “observed” with SimCADO

2hr runs for system H=21°
2 separate objects can be combined in a single simulation

SimCADO needs

1) Image of the lensing elliptical B1938

2) Image of the lensing elliptical B1938

3) A spectrum for each galaxy
Combine 2 Source objects and run

```python
In [1]: import simcado as sim

lam, spec = sim.source.SED("spiral",  "H",  19)
ring = sim.source.source_from_image("B1938_ring.fits", plate_scale=0.004,
                                    lam=lam, spectra=spec)
ellip = sim.source.elliptical(r_eff=0.2, plate_scale=0.004,
                               filter_name="H", mag=21, ellipticity=0.1)

src_combi = ring + ellip

sim.run(src_combi, filename="sim_B1938.fits", OBS_EXPTIME=7200)
```
Combine 2 Source objects and run

Use inbuilt model of Elliptical galaxy

Create Source from on-disk image of lensed galaxy

In [1]:
import simcido as sim

lam, spec = sim.source.SED("spiral", "H", 19)
ring = sim.source.source_from_image("B1938_ring.fits", plate_scale=0.004,
 lam=lam, spectra=spec)

ellip = sim.source.elliptical(r_eff=0.2, plate_scale=0.004,
 filter_name="H", mag=21, ellipticity=0.1)

src_combi = ring + ellip

sim.run(src_combi, filename="sim_b1938.fits", OBS_EXPTIME=7200)

Combine Source objects

Make some observations
SimCADO 3: Multiply imaged quasar light curves

J=15 mag, 10 min exposure time
System diameter ~4 arcsec
Light curve from QSO J1131-1231 (Tewes+ 2013)
SimCADO 3: Multiply imaged quasar light curves

J=20 mag, 60 min exposure time
System diameter ~0.4 arcsec
Majority of effort goes into describing objects of interest

```python
In [ ]:
import simcado as sim
from astropy.io import ascii

spiral = sim.source.spiral_profile(r_eff=25, arms_width=0.3)
sp_lensed = sim.source.apply_grav_lens(spiral, y_cen=-10, eccentricity=0.3, rotation=-45)
lam, spec = sim.source.SED("spiral", "J", mag=20)
ring = sim.source.source_from_image(sp_lensed, lam=lam, spectra=spec, plate_scale=0.004)

ellip = sim.source.elliptical(0.2, plate_scale=0.004, mag=21,
              filter_name="J", ellipticity=0.7, angle=45)

tbl = ascii.read("./qso_light_curves.dat") # Tewes+ (2013)
mags = np.array([tbl[n+"_mag"] for n in "ABCD"])
xp, yp = get_dists_from_centre()

for i in range(len(t)):
    stars = sim.source.stars(mags=mags[:, i], x=xp, y=yp)

src_combi = ellip + lens + stars

sim.run(src_combi, filename=\"str(i)+".fits\", OBS_EXPTIME=3600)
```
Majority of effort goes into describing objects of interest

```python
import simcado as sim
from astropy.io import ascii

spiral = sim.source.spiral_profile(r_eff=25, arms_width=0.3)
sp_lensed = sim.source.apply_grav_lens(spiral, y_cen=-10, eccentricity=0.3, rotation=-45)
lam, spec = sim.source.SED("spiral", "J", mag=20)
ring = sim.source.source_from_image(sp_lensed, lam=lam, spectra=spec, plate_scale=0.004)

ellip = sim.source.elliptical(0.2, plate_scale=0.004, mag=21,
filter name="J", ellipticity=0.7, angle=45)

tbl = ascii.read("./qso_light_curves.dat") # Tewes+ (2)
mags = np.array([tbl[n+"_mag"] for n in "ABCD"])
xp, yp = get_dists_from_centre()

for i in range(len(t)):
    stars = sim.source.stars(mags=mags[:, i], x=xp, y=yp)
src_combi = ell + lens + stars

sim.run(src_combi, filename=str(i)+".fits", OBS_EXPTIME=3600)
```

Generate lensed spiral galaxy

Generate elliptical galaxy

Create variable cores

“Observe” the system
Getting started with SimCADO

Install the package

```bash
$ pip3 install --user http://www.univie.ac.at/simcado/SimCADO.tar.gz
```

Update the data

```python
>>> import simcado
>>> simcado.get_extras()
```

Make / Download a detector noise cube

```python
>>> simcado.install_noise_cube(n=25)
```
Welcome to SimCADocs

The (slowly expanding) documentation base for SimCADO

Omega Cen as imaged with HST/WFC3, HST/SimCADO and MICADO/SimCADO by Maximilian Fabricius (MPE). The synthetic images of the same region of Omega Cen are based on the HST catalog by Anderson & van der Marel 2010 and augmented by all the faint stars that did not end up in the HST catalogue.

SimCADO in a nutshell

SimCADO is a python package designed to simulate the effects of the Atmosphere, E-ELT, and MICADO instrument on incoming light. The current version (v0.2) can simulate the MICADO imaging modi (4mas and 1.5mas per pixel in the wavelength range 0.7μm to 2.5μm).
Observational horizon for spectral types assuming an apparent magnitude limit of $K_s = 27.5''$.